Job Ref. Project rep-tjba-condale-TBP-UNIT D-detailed Condale - Tower Business Park - Unit D. T J Booth Associates. Section Sheet no./rev. Consulting Engineers **Detailed Drainage Design** 1 20A Eastgate St, Date Date Chk'd by Date Calc. by App'd by Rochdale Nov 2017 ds **OL16 1DH**

History.

Revision	Date	Reason
p0	Nov 2017	Planning.

History	1
Background1	
Predevelopment Land Usage1	
Proposed Development Land Usage1	1
Pre-development Rainfall Runoff1	1
Proposed Allowable Run-off1	1
Total Pre-development Run-off	2
Proposed SW Flood Attenuation System	2
Flood Storage Attenuation & Discharges.	2
100 Year +CC Return Period	2
Appendix	3
Source Control SW Attenuation, 1:100+CC yr Rainfall Event	3
Hydro-brake Technical Details	7

Background.

To calculate proposed drainage characteristics and SW attenuation design in order to design the detailed site drainage.

Predevelopment Land Usage.

Pre-development site area (brownfield area) 0Ha. (0 sqm)
Pre-development site area (greenfield area) 0.595 Ha. (5950 sqm)

Total Site 0.595 Ha. (5950 sqm)

Proposed Development Land Usage.

Rural area (s.landscaping etc) 0.065 Ha (0650 sqm)

Roofs, driveways, pavement & access Rd 0.530 Ha (5300 sqm)

Total Proposed Site 0.595 Ha. (5950 sqm)

Pre-development Rainfall Runoff.

The site comprises both impermeable and permeable areas and thus run-off estimates can be considered as both greenfield and brownfield & calculated as follows:

Proposed Allowable Run-off.

Full site allowance was previously agreed between DWLLP Consulting Engineers and United Utilities.

Total site allowance 31.16 l/s

	Project				Job Ref.	
T I Dooth Associates	Condale – Tower Business Park – Unit D.				rep-tjba-condale-TBP-UNIT D-detailed	
T J Booth Associates.	Section				Sheet no./rev.	
Consulting Engineers 20A Eastgate St,	Detailed Drainage Design				2	
Rochdale	Calc. by	Date	Chk'd by	Date	App'd by	Date
OL16 1DH	ds	Nov 2017				

Total site area (all units)

2.8 Ha.

Unit D area

0.595 Ha.

Unit D allowance (as a ratio of site area), 0.595 / 2.8 x 31.16 =

6.62 l/s

Total Pre-development Run-off.

Site Partition	Individual Site	Total Site Area	Total Site	Individual Site
	Area (Ha)	(Ha)	Allowable	Allowable
			Discharge (I/s)	Discharge (I/s)
UNITS E & F	0.655	2.8	31.16	7.29
UNIT G	0.40	2.8	31.16	4.45 (5l/s)
UNIT A	0.482	2.8	31.16	5.36
UNIT D	0.595	2.8	31.16	6.62
UNIT C	0.668	2.8	31.16	7.43

Proposed SW Flood Attenuation System

The site is to be served by channel/slot drains and aco kerbs to the car parks, and siphonic drainage to the roof area.

To evaluate SUDS, different rainfall events were sized to give the critical volume required to retain the largest flood event volume. The system will utilise modular surface water storage crates to give the required volume for the 1:100yr+cc flood event, controlled by a Hydro-Break Optimum vortex flow control unit that will limit surface water to not greater than 6.62 l/s at a control head of 1.075m.

Flood Storage Attenuation & Discharges.

100 Year +CC Return Period.

The following indicates the flow control and storage on site before discharge in to the UU mains sewer.

Storage required 293m3 of attenuation storage

Storage provided approx 297m3 (23m x 12m x 1.075m)

Refer to TJBA calculation spreadshhet in appendix. All calculation are run with a 30% allowance for climate change.

Critical storm 480 Winter

Max water level 137.79m aOD = 1.06m depth.

Control Hydro-Brake vortex control unit ngt 6.6l/s @ max 1.075m head

Max control discharge 6.6 l/s

Allowable discharge = 6.62 l/s **OK**.

Refer to appendix for storm water attenuation & vortex discharge calculations.

	Project				Job Ref.		
T I Dooth Accordates	Co	Condale – Tower Business Park – Unit D.				rep-tjba-condale-TBP-UNIT D-detailed	
T J Booth Associates.	Section		Sheet no./rev.				
Consulting Engineers 20A Eastgate St,		Detailed Drainage Design				3	
Rochdale	Calc. by	Date	Chk'd by	Date	App'd by	Date	
OL16 1DH	ds	Nov 2017					

Appendix.

Source Control SW Attenuation, 1:100+CC yr Rainfall Event.

104 Yorkshire St Rochdale Lancashire OL16 Date 12/09/17 File calc-tjba-CCL-		, darwen	Condale Cons Unit D Tower Busine Designed By Checked By	ess Park DS		Page 1	TO TO	CG.			
Micro Drainage Source Control W.10.4 Summary of Results for 100 year Return Period (+30%)											
Storm Maximum Maximum Maximum Maximum Maximum Overflow Maximum											
Duration (mins)	Control (1/s)	Overflow (1/s)	Outflow (1/s)	Water Level (m OD)		Volume (m³)	Volume (m³)	Status			
15 Summer 30 Summer 60 Summer 120 Summer 180 Summer 240 Summer 480 Summer 600 Summer 720 Summer 720 Summer 1440 Summer 1440 Summer 2160 Summer	6.666666666666666666666666666666666666	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	137.107 137.253 137.419 137.547 137.618 137.644 137.654 137.654 137.632 137.592 137.592	2 0.5232 8 0.6898 3 0.8173 8 0.8888 8 0.9148 3 0.9123 3 0.9023 3 0.9023 8 0.6638	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	104.2 144.4 190.4 225.6 245.3 252.4 251.8 255.6 249.0 240.1 218.8 183.2 148.4	O K O K O K O K O K O K O K O K O K O K			
4320 Summer 5760 Summer 7200 Summer 8640 Summer 15 Winter 30 Winter 60 Winter 120 Winter 180 Winter	6.6 6.5 6.2 5.0 6.6 6.6 6.6 6.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.6 6.5 6.2 5.0 6.6 6.6 6.6 6.6	137.082 136.973 136.899 136.867 137.170 137.333 137.510 137.673 137.742	7 0.2437 3 0.1892 3 0.1593 2 0.1373 2 0.4402 7 0.6038 3 0.7803 3 0.9433 3 1.0123	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	97.3 67.3 52.3 43.9 37.8 121.5 166.7 215.3 260.4 279.3 288.8	O K O K O K O K O K O K O K O K O K O K			
			Storm uration (mins)	Rain T (mm/hr)	ime-Peak (mins)						
		1 2 3 4 6 7 9 14 21 28 43 57 72 86 100	Summer 30 Summer 20 Summer 80 Summer	19.23	18 33 66 122 184 242 330 392 454 522 660 940 1340 1704 2388 3064 3752 4424 5152 22 37 66 122 180 236						
			/-\4002 D	006 Micro Drain							

Project Job Ref. rep-tjba-condale-TBP-UNIT D-detailed Condale - Tower Business Park - Unit D. Sheet no./rev. T J Booth Associates. Section **Consulting Engineers** Detailed Drainage Design 4 20A Eastgate St, Date Calc. by Date Chk'd by Date App'd by Rochdale ds Nov 2017 OL16 1DH

T J Booth Associat	es					Page 2				
104 Yorkshire St			Condale Cons	struction			4			
Rochdale			Unit D Tower Busine	5.1) i Go	(O)			
Lancashire OL16	IJY			6						
Date 12/09/17				rine.	(c) (c)					
File calc-tjba-CCL- Micro Drainage	tower bus pr	, darwen	Checked By Source Contro	ol W 10 4						
Pilcro Drainage			Source Contro	OI VV.10.7						
	Summary of Results for 100 year Return Period (+30%)									
Storm	Maximum	Maximum		Maximum Water Level		Overflow		6 1 - 1		
Duration (mins)	Control (1/s)	Overflow (1/s)	(1/s)	(m OD)	Depth (m)	Volume (m³)	Volume (m³)	Status		
360 Winter	6.6	0.0	0 6.6	137.7853	1.0553	0.0	291.3	ОК		
480 Winter	6.6	0.		137.7918	1.0618	0.0	293.0	O K		
600 Winter	6.6	0.		137.7788		0.0		O K		
720 Winter	6.6	0.		137.7608		0.0		O K		
960 Winter	6.6	0.		137.7138 137.6003		0.0		O K		
1440 Winter 2160 Winter	6.6 6.6	0.		137.6003 137.3972		0.0		O K		
2880 Winter	6.6	0.		137.3972		0.0		O K		
4320 Winter	6.5	0.		136.9672		0.0	65.5	0 K		
5760 Winter	5.7	0.		136.8962		0.0		O K		
7200 Winter	4.8	0.	0 4.8	136.8593	0.1293	0.0	35.7	O K		
8640 Winter	4.3	0.		136.8337		0.0		O K		
10080 Winter	3.9	0.	0 3.9	136.8217	0.0918	0.0	25.3	O K		
			Storm	Rain Ti	me-Peak					
		1	Duration (mins)		(mins)					
			360 Winter		344					
			480 Winter		442					
			600 Winter		478					
			720 Winter 960 Winter		554 712					
		1	440 Winter		1018					
			160 Winter		1448					
		2	880 Winter	2.46	1792					
			320 Winter		2416					
		_	760 Winter 200 Winter		3064					
			640 Winter		3760 4488					
			080 Winter		5144					
		10	WINCEL	0.55	3144					

Job Ref. Project rep-tjba-condale-TBP-UNIT D-detailed Condale - Tower Business Park - Unit D. drainage design-271017 docx T J Booth Associates. Sheet no./rev. Section Consulting Engineers Detailed Drainage Design 5 20A Eastgate St, Calc. by Chk'd by Date Date Date App'd by Rochdale ds Nov 2017 OL16 1DH

T J Booth Associates		Page 3
104 Yorkshire St	Condale Construction	
Rochdale	Unit D	M. Merro
Lancashire OL16 1JY	Tower Business Park	
Date 12/09/17	Designed By DS	
File calc-tjba-CCL-tower bus pk, darv	ven Checked By	
Micro Drainage	Source Control W 10 4	

Rainfall Details

Region	ENG+WAL	Shortest Storm (mins)	15
Return Period (years)	100	Longest Storm (mins)	10080
M5-60 (mm)	20.000	Summer Storms	Yes
Ratio-R	0.300	Winter Storms	Yes
Cv (Summer)	0.750	Climate Change %	+30
Cv (Winter)	0.840	-	

Pipe Network

Volume in Pipe Network (m^3) 6 Dia of Outfall Pipe (m) 0.200 Slope of Outfall Pipe (1:x) 200.0 Roughness of Outfall Pipe 0.600

Time / Area Diagram

Total Area (ha) = 0.530

Time (mins) Area from: to: (ha)

0 4 0.530

(c)1982-2006 Micro Drainage

T J Booth Associates. Consulting Engineers 20A Eastgate St, Rochdale

OL16 1DH

Project				Job Ref.	
Con	dale – Tower Βι	rep-tjba-condale-TBP-UNIT D-detailed			
Section		Sheet no./rev.			
	Detailed Dra			6	
Calc. by	Date	Chk'd by	Date	App'd by	Date
ds	Nov 2017				

T J Booth Associates		Page 4		
104 Yorkshire St	Condale Construction			
Rochdale	Unit D			
Lancashire OL16 1JY	Tower Business Park	Dr. Co		
Date 12/09/17	Designed By DS			
File calc-tjba-CCL-tower bus pk, darwen	Checked By			
Micro Drainago	Source Control W 10.4			

Tank/Pond Details

Invert Level (m) 136.730 Ground Level (m) 138.600

		Depth (m)						Area (m²)
0.20 0.30 0.40	276.0 276.0 276.0 276.0 276.0 276.0	0.70 0.80 0.90 1.00	276.0 276.0 276.0	1.30 1.40 1.50 1.60	276.0 276.0 276.0	1.90 2.00 2.10 2.20	276.0 276.0 276.0 276.0	276.0 276.0

Depth / Flow Outflow Control

Invert Level of Control 136.730

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	-	Flow (1/s)	_	Flow (1/s)	Depth (m)	Flow (1/s)
0.10	4.2	0.80	5.7	2.00	6.9	4.00	6.9	7.00	6.9
0.20	6.4	1.00	6.4	2.20	6.9	4.50	6.9	7.50	6.9
0.30	6.6	1.20	6.9	2.40	6.9	5.00	6.9	8.00	6.9
0.40	6.5	1.40	6.9	2.60	6.9	5.50	6.9	8.50	6.9
0.50	6.4	1.60	6.9	3.00	6.9	6.00	6.9	9.00	6.9
0.60	6.0	1.80	6.9	3.50	6.9	6.50	6.9	9.50	6.9

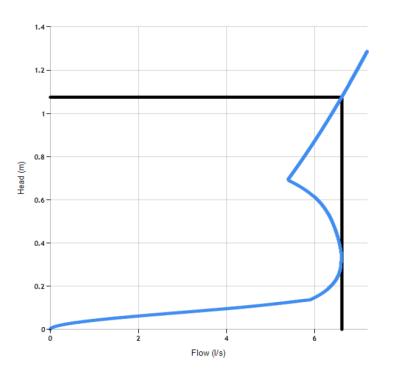
Pipe Overflow Control

Pipe Diameter (m)	0.150	Entry Loss Coef	0.500
Slope (1:x)	60.0	Coef of Contraction	0.600
Length (m)	6.000	Invert Level (m)	137.810
Roughness (mm)	0.600		

(c)1982-2006 Micro Drainage

T J Booth Associates. Consulting Engineers 20A Eastgate St, Rochdale OL16 1DH

Project				Job Ref.		
Con	dale – Tower Bu	ısiness Park – L	rep-tjba-condale-TBP-UNIT D-detailed			
Section	Sheet no./rev.					
		7				
Calc. by	Date	Chk'd by	Date	App'd by	Date	
ds	Nov 2017					


Hydro-brake Technical Details.

Technical Specification					
Control Point	Head (m)	Flow (I/s)			
Primary Design	1.075	6.618			
Flush-Flo™	0.318	6.610			
Kick-Flo®	0.691	5.389			
Mean Flow		5.741			

PT/329/0412

Head (m)	Flow (I/s)
0.000	0.000
0.037	0.792
0.074	2.715
0.111	4.788
0.148	6.013
0.185	6.293
0.222	6.466
0.259	6.562
0.297	6.604
0.334	6.608
0.371	6.585
0.408	6.546
0.445	6.494
0.482	6.429
0.519	6.348
0.556	6.241
0.593	6.095
0.630	5.894
0.667	5.619
0.704	5.438
0.741	5.569
0.778	5.696
0.816	5.820
0.853	5.941
0.890	6.060
0.927	6.176
0.964	6.290
1.001	6.401
1.038	6.511
1.075	6.618

DESIGN ADVICE	Hydro-Brake Ontimum® Flow Control are unique. Dynamic hydraulic modelling		Hydro Solutional Solution 1		
!		use of any other flow control will invalidate any design based on this data could constitute a flood risk.	International 2 ®		
DATE		31/10/2017 14:26:46			
SITE		Tower Business Park	SHE-0119-6620-1075-6620		
DESIGNER		Daniel Slattery	Hydro-Brake Optimum®		
REF		Unit D	Trydro-brake Optimumo		
© 2017	© 2017 Hydro International, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371 Fax 01275 874979 Web www.hydro-int.com Email enquiries@hydro-int.com				